Doubly penalized likelihood estimator in heteroscedastic regression*1
نویسندگان
چکیده
منابع مشابه
Penalized Maximum Likelihood Estimator for Skew Normal Mixtures
Skew normal mixture models provide a more flexible framework than the popular normal mixtures for modelling heterogeneous data with asymmetric behaviors. Due to the unboundedness of likelihood function and the divergency of shape parameters, the maximum likelihood estimators of the parameters of interest are often not well defined, leading to dissatisfactory inferential process. We put forward ...
متن کاملPenalized Least Squares and Penalized Likelihood
where pλ(·) is the penalty function. Best subset selection corresponds to pλ(t) = (λ/2)I(t 6= 0). If we take pλ(t) = λ|t|, then (1.2) becomes the Lasso problem (1.1). Setting pλ(t) = at + (1 − a)|t| with 0 ≤ a ≤ 1 results in the method of elastic net. With pλ(t) = |t| for some 0 < q ≤ 2, it is called bridge regression, which includes the ridge regression as a special case when q = 2. Some penal...
متن کاملDoubly fractional models for dynamic heteroscedastic cycles
Strong persistence is a common phenomenon that has been documented not only in the levels but also in the volatility of many time series. The class of doubly fractional models is extended to include the possibility of long memory in cyclical (non-zero) frequencies in both the levels and the volatility and a new model, the GARMA-GARMASV (Gegenbauer AutoRegressive Mean Average Id. Stochastic Vola...
متن کاملA Non-degenerate Estimator for Variance Parameters in Multilevel Models via Penalized Likelihood Estimation
In this paper we consider the problem of obtaining zero estimates for group-level variance parameters in multilevel or hierarchical linear models, a problem that occurs frequently when the number of groups or the value of the variance is small. For situations where zero variances are implausible a priori, we propose a maximum penalized likelihood approach to avoid such boundary estimates. This ...
متن کاملAsymptotic properties of a double penalized maximum likelihood estimator in logistic regression
Maximum likelihood estimates in logistic regression may encounter serious bias or even non-existence with many covariates or with highly correlated covariates. In this paper, we show that a double penalized maximum likelihood estimator is asymptotically consistent in large samples. r 2007 Elsevier B.V. All rights reserved.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Statistics & Probability Letters
سال: 2004
ISSN: 0167-7152
DOI: 10.1016/s0167-7152(04)00101-4